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Table 2-1 Key References on Reinforced Concrete Wall Behavior (continued) 

Reference Description Comp. Behavior modes Addressed 

Types AB C D E F G H I J K L 
Paulay, Priestley & 4 test specimens, 2 rectangular, 2 flanged. RCI . 
Synge (1982) Low-rise walls, MIVL =0.57 Approx. 1/2 scale. 

Two specimens with diagonal bars to prevent sliding shear. 

Paulay & Binney 12 coupling-beam test specimens, 3 monotonic loading, 9 cyclic-static loading. RC3 . . . . 
(1974) Paulay (197 1a, MIVL = 0.51, 0.65. Approx. 1/2 scale. Varied amount of stirrup reinforcement, and amount CD 

C 1971b) and arrangement of longitudinal reinf., 3 specimens with diagonal bars. 
I 

Paulay and Santhaku- Two 7-story coupled wall specimens. Cyclic-static loading 1/4 scale. One specimen with RC1 
mar (1976) diagonally reinforced coupling beams. RC3 0 
Barney et al (1978) 8 coupling beam test specimens, Cyclic-static loading. MIVL = 1.25, 2.5. Approximately RC3 A)

(Portland Cement 1/3-scale specimens with conventional longitudinal reinforcement, diagonal bars in a 
Association) hinge zones, and full length diagonal bars. Full length diagonal reinforcement signifi-

M
cantly improved performance. 

..oM Wight (Editor) 7-story building, two bays by three bays with beam and slab floors, cyclic-static loading full RC1 
w (1985) scale. One wall acting parallel to moment frames. Parallel and perpendicular frames CD 

increased the capacity of the structure. 
o Test structure repaired with epoxy injection and re-tested 

0. Alexander, Heide- MIVL = 2.0, 1.33, 0.67 Cyclic-static loading. RCIIn 

0o 
0

0
0
0 

CD

CDC

(a sity) 

CDShiga, Shibata, and 8 test specimens, 6 cyclic-static loading, 2 monotonic. RC1 30 
Takahashi (1973 Approx. 1/4 scale. Barbell section.Load history, web reinforcement, and axial load varied. a 
,1975) (Tohoku Uni- MIVL = 0.63. i0 
versity) 

Maier (1991) 10 test specimens, 2 cyclic-static loading, 8 monotonic. RC1 
7 flanged sections, 3 rectangular. Approx. 1/3 scale. Reinforcement and axial load varied. 
M/VL = 1. 12. 

' Behavior modes: 

A Ductile Flexural Response F Flexure/Lap-Splice Slip K Preemptive Boundary Zone Compression Failure 

B Flexure/Diagonal Tension G Flexure/Out-of-Plane Wall Buckling L Preemptive Lap-Splice Failure 

C Flexure/Diagonal Compression (Web Crushing) H Preemptive Diagonal Tension M Global foundation rocking of wall 

D Flexure/Sliding Shear I Preemptive Web Crushing N Foundation rocking of individual piers 

E Flexure/Boundary-Zone Compression J Preemptive Sliding Shear 
WD 

C brcht, and Tso (1973) 1/2 scale. Axial load varied. 
(McMaster Univer- a 
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Table 2-1 Key References on Reinforced Concrete Wall Behavior (continued) 

0

0) 

10 
0 

Reference Description Comp. Behavior modes Addressed 

Types AB C D E F G H I J K L 
Mansur, Balendra, 4 successful test specimens, cyclic-static loading. RCI 
and H'ng (1991) Approx. 1/4 scale. Flanged section. Web reinforced with welded wire mesh or expanded 

metal. 

M/VL = 0.68. 

Saatcioglu (1991) 3 test specimens, cyclic-static loading RCI . . 
Approx. 1/3 scale. Rectangular section. Horizontal and sliding-shear dowel reinforcement 

varied. 

MIVL = 0.50. 

Aristizabal-Ochoa, 4 shake-table specimens. Approx. 1/12 scale. RCI 
Dario, & Sozen 10-story coupled walls, rectangular pier and beam sections. Discusses reduced stiffness of RC3 

D, 

-I 
(1976) (University of coupling beams resulting from bond slip, and redistribution of demands between wall 

-4 Illinois) piers.
ED 

MLybas & Sozen 6 test specimens, 5 shake-table and I cyclic static. Approx. 1/12 scale. RCI
C,O (1977) (University of 6-story coupled walls, rectangular pier and beam sections. RC3 
CD Illinois) 

Azizinamini et al. Out-of-plane tests on tilt-up walls. 6 test specimens. RCI a,0 
C 
0
CD 

CD 
0
0 
0 

C,


(1994) (Portland Approx. 3/5 scale. Monotonic out-of-plane loading. 
Cement Association) Report shows typical crack patterns resulting from out-of-plane forces. 

to ACI-SEAOSC Out-of-plane tests on tilt-up walls, 12 reinforced concrete specimens (Also, 18 reinforced RC1 
Task Force (1982) masonry specimens). Full scale monotonic out-of-plane loading and constant axial loading 

hit ratios of 30 to 60. 

0 

0
CD 
-4 

'Behavior modes: 

A Ductile Flexural Response F Flexure/Lap-Splice Slip K Preemptive Boundary Zone Compression Failure 

B Flexure/Diagonal Tension G Flexure/Out-of-Plane Wall Buckling L Preemptive Lap-Splice Failure 

C Flexure/Diagonal Compression (Web Crushing) H Preemptive Diagonal Tension M Global foundation rocking of wall 

D Flexure/Sliding Shear I Preemptive Web Crushing N Foundation rocking of individual piers 

E Flexure/Boundary-Zone Compression J Preemptive Sliding Shear 

0-. I 



Chapter 2: Reinforced Concrete Components 

2.4 Symbols for Reinforced Concrete 
Symbols that are used in this chapter are defined below. hw = Height of wall or segment of wall considered 
Further information on some of the variables used (per ACI) 
(particularly those noted "per ACT") may be found by 
looking up the symbol in Appendix D of ACI 318-95. krc = Coefficient accounting the effect of ductility 

demand on V, per FEMA 306, Section A2.3.6.b 
Ach = Cross sectional area of confined core of wall 

Ip = Equivalent plastic hinge length, determined 
boundary region, measured out-to-out of con­
fining reinforcement and contained within a according to FEMA 306, Section A2.3.3. 

length c' from the end of the wall, FEMA 306, IK= Unsupported length considered for wall buck-
Section A2.3.7 ling, determined according to FEMA 306, 

ACV= Net area of concrete section bounded by web Section A2.3.9 

thickness and length of section in the direction In = Beam clear span (per ACI) 
of shear force considered, in2 (per ACI) 

1W = Length of entire wall or segment of wall con-
Ag = Gross cross sectional area of wall boundary sidered in direction of shear force (per ACI). 

region, taken over a length c' from the end of (For isolated walls and wall piers equals hori­
the wall, FEMA 306, Section A2.3.7 zontal length, for spandrels and coupling beams 

equals vertical dimension i.e., overall depth)
Ash = Total cross-sectional area of transverse rein­

forcement (including crossties) within spacing s Mcr = Cracking moment (per ACI) 

and perpendicular to dimension h,. (per ACI) Me = Expected moment strength at section, equal to 

b = Width of compression face of member, in (per nominal moment strength considering expected 
ACI) material strengths. 

bw = Web width, in (per ACI) M, = Nominal moment strength at section (per ACI) 

c = Distance from extreme compressive fiber to Mu = Factored moment at section (per ACI) 
neutral axis (per ACI) 

M/V= Ratio of moment to shear at a section. When 
c' = Length of wall section over which boundary moment or shear results from gravity loads in 

ties are required, per FEMA 306, addition to seismic forces, can be taken as 
Section A2.3.7 M. /V. 

db = Bar diameter (per ACI) No = Factored axial load normal to cross section 

dbt = Bar diameter of tie or loop occurring simultaneously with Vu;to be taken 
as positive for compression, negative for ten­

fc = Specified compressive strength of concrete, psi sion (per ACI) 
(per ACI) s = Spacing of transverse reinforcement measured 

fy = Specified yield strength of nonprestressed rein- along the longitudinal axis of the structural 

forcement, psi. (per ACI) member (per ACI) 

fyh = Specified yield strength of transverse reinforce- s, = spacing of vertical reinforcement in wall (per 

ment, psi (per ACI) ACI) 

hc = Cross sectional dimension of confined core of Vc = Nominal shear strength provided by concrete 

wall boundary region, measured out-to-out of (per ACI) 

confining reinforcement 
V, = Nominal shear strength (per ACI) 

hd = Height over which horizontal reinforcement VP = Nominal shear strength related to axial load per 
contributes to V, per FEMA 306, Section 
Section A2.3.6.b 
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Chapter 2: Reinforced Concrete Components 

V, = Nominal shear strength provided by shear rein- ILA = Displacement ductility demand for a compo­
forcement (per ACI) nent, used in FEMA 306, Section A2.3.4, as 

Vu = Factored shear force at section (per ACI) 
discussed in Section 6.4.2.4 of FEMA-273. 
Equal to the component deformation corre-

VwC= Web crushing shear strength per FEMA 306, 
Section A2.3.6.c 

sponding to the global target displacement, 
divided by the effective yield displacement of 
the component (which is defined in Section 

a = Coefficient accounting for wall aspect ratio 6.4.1.2B of FEMA-273). 
effect on V, per FEMA 306, Section A2.3.6.b 

Pg = Ratio of total reinforcement area to cross-sec-
/3 = Coefficient accounting for longitudinal rein­ tional area of wall. 

forcement effect on V, per FEMA 306, 
Section A2.3.6.b 

pt = Local reinforcement ratio in boundary region of 
wall according to FEMA 306, Section A2.3.7 

8 = Story drift ratio for a component, correspond­
ing to the global target displacement, used in 
the computation of V.c, FEMA 306, 

pn = Ratio of distributed shear reinforcement on a 
plane perpendicular to plane of A,, (per ACI). 

= 

Section A2.3.6.c 

Coefficient of friction (per ACI) 

(For typical wall piers and isolated walls indi­
cates amount of horizontal reinforcement.) 
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2.5 References for Reinforced Concrete
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Chapter 3: Reinforced Masonry 

Reinforced Masonry
3 

3.1 Commentary and 
Discussion 

Several topics that are relevant to the development of 
the reinforced masonry component guides are addressed 
in this chapter. 

3.1.1 Typical Hysteretic Behavior 
The behavior modes described for reinforced masonry 
in FEMA 306, Section A3.2 are based on experimental 
research and field observation of earthquake damaged 
masonry buildings. Typical damage patterns and 
hysteretic response representative of different 
components and behavior modes are presented in 
Table 3-1 

3.1.2 Cracking and Damage Severity 
Cracks in a structural wall can provide information 
about previous displacements and component response. 
Aspects of cracking that relate to component behavior 
include: 

* The orientation of cracks 

* The number (density) of cracks 

* The spacing of cracks 

* The width of individual cracks 

* The relative size of crack widths 

In reinforced masonry with a flexural behavior mode, 
flexural cracks generally form in the mortar bed joints. 
At the base of a tall cantilever wall, flexural cracks may 
propagate across the entire length of the wall. Following 
an earthquake, flexural cracks tend to close due to 
gravity loads, and they may be particularly hard to 
locate in mortar joints. They are generally associated 
with ductile response and the natural engagement of 
vertical reinforcement; as a result, they do not provide a 
good measure of damage. When such cracks are visible, 
they are only used to identify behavior modes, not to 
assess the severity of damage. 

Diagonal cracks reflect associated shear stresses, but 
they may be a natural part of ductile flexural action. In 

fully-grouted hollow brick or block masonry, diagonal 
cracks typically propagate through the units with short 
deviations along the mortar joints. Stair-step diagonal 
cracks are rare, and would indicate partial grouting and 
low-strength mortar. In plastic-hinge zones undergoing 
flexural response, diagonal cracks propagate from the 
ends of flexural cracks. In shear-dominated panels, 
diagonal cracks are more independent of flexural 
cracks. 

In a flexurally-controlled wall, diagonal cracks are well-
distributed and of uniform, small width. In a wall 
undergoing the transition from flexural response to 
shear response, one or two diagonal cracks, typically at 
the center of the wall, will grow wider than the others, 
dominating the response and concentrating shear 
deformations in a small area. A poorly-detailed wall 
undergoing preemptive shear behavior may have very 
few cracks until a critical, single diagonal crack opens. 

In the investigation of earthquake-damaged concrete 
and masonry wall structures, cracks are the most visible 
evidence of damage. Because cracks are a striking and 
easily observed indication of the effect of earthquakes 
on walls, there is a strong temptation to overemphasize 
the relationship between crack width and the associated 
decrease (if any) in the strength and deformation 
capacity of a wall. Hanson (1996), has made the case 
that crack width alone is a poor indicator of damage 
severity. In recognition of this, the Component Damage 
Classification Guides in FEMA 306 do not rely on 
crack width as the only description of damage-
numerous indicators of damage severity in reinforced 
masonry walls are described, among which crack width 
is only one. Cracking patterns can provide a wealth of 
information about the performance of a structural wall, 
but the location, orientation, number, and distribution of 
the cracks must be considered as important as, if not 
more important than, the crack width. 

With the understanding that crack width must be 
considered in the context of all of the other parameters 
that can affect the behavior mode and damage severity 
of a wall, a rational approach is required to understand 
the influence of crack width on damage. This section 
outlines the basis of crack width limits specified in the 
Component Damage Classification Guides. 
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Table 3-1 Damage Patterns and Hysteretic Response for Reinforced Masonry Components 

Component and Reference Jrack I Damage Pattern Hysteretic Response 
Behavior Mode 

RM 1 Shing et al., 100. 

DIAGONAL CRACK ,TOE CRUSHING
80.0 

Flexure Specimen 12 

See Guide R M l A  
2 0.00
9 

$ -20.0 
w'I -40.0 

-60.0 

DIAGONAL CRACK -80.0 TOE CRUSHING' 7 
-2.00 -1.50 -1.00 -0.50 0.00 0.50 1.00 1.50 2 M  

LATERAL DKPLACNENT [IN] 

RM 1 Priestley and 
3der 1982 

Flexure 

See Guide R M l A  

-c
80 ra0 




